Per-Core DVFS with Switched-Capacitor Converters for Energy Efficiency in Manycore Processors

Ruzica Jevtić, Member, IEEE, Hanh-Phuc Le, Member, IEEE, Milovan Blagojević, Student Member, IEEE, Stevo Bailey, Student Member, IEEE, Krste Asanović, Fellow, IEEE, Elad Alon, Member, IEEE and Borivoje Nikolić, Senior Member, IEEE

Abstract—Integrating multiple power converters on-chip improves energy efficiency of manycore architectures. Switched-capacitor (SC) DC-DC converters are compatible with conventional CMOS processes, but traditional implementations suffer from limited conversion efficiency. We propose a dynamic voltage and frequency scaling (DVFS) scheme with SC converters that achieves high converter efficiency by allowing the output voltage to ripple and having the processor core frequency track the ripple. Minimum core energy is achieved by hopping between different converter modes and tuning body-bias voltages. A multi-core processor model based on a 28 nm technology shows conversion efficiencies of 90% along with over 25% improvement in overall chip energy-efficiency.

Index Terms—DVFS, switched capacitor, multicore processors.

I. INTRODUCTION

The growing need for energy efficiency while utilizing increased transistor densities, has led to the development of manycore architectures. To maximize the energy efficiency of a processor when using dynamic voltage and frequency scaling [1], it is highly desirable to independently control the supply and the clock frequency for each core [2], [3].

As the number of cores grows, fine-grained DVFS schemes become prohibitively challenging to implement by using off-chip inductor-based converters. In contrast, reconfigurable switched-capacitor (SC) DC-DC converters can be completely integrated, while offering reduced switch V-A stress and reduced overshoot [4]. Their primary disadvantage lies in the inherent switched-capacitor loss caused by voltage ripple across the flying capacitors and the fact that a conventional digital system is operated based on minimum supply voltage [5]. In this paper, we show that by adapting the clock waveform to the rippling supply voltage through the use of adaptive clock schemes [6], the voltage ripple can be turned into additional performance, resulting in conversion efficiencies of 90% across a wide range of conversion ratios. In addition, by paying a modest penalty in efficiency, and operating the converters with high power densities, the area overhead can be reduced by an additional order of magnitude, thus enabling their practical implementation in fine-grained DVFS schemes with many cores.

R. Jevtić, H.-P. Le, M. Blagojević, S. Bailey, K. Asanović, E. Alon and B. Nikolić are with the Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA, 94704 USA e-mail: (ruzica@eecs.berkeley.edu).

R. Jevtić is also with Technical University of Madrid and M. Blagojević is also with ST Microelectronics and ISEP.

Fig. 1. Output of the converter and adaptive clock for digital circuits.

Traditional system energy analysis assumes fixed supply voltage. We introduce the analysis of the manycore system energy when operated under changing supply voltage. The analysis helps us perform a global optimization to find the minimum-energy operating point of a processor core for a desired application performance level. To overcome the limitation of the finite number of conversion ratios in a SC DC-DC converter, we introduce a combined technique exploiting the body-bias voltage tuning applicable to fully depleted silicon-on-insulator (FDSOI) technology [8] together with DC-DC state hopping. This technique reduces the energy per core by up to 25% compared to DVFS schemes with traditional on-chip SC voltage regulators.

II. OPTIMIZED SC DC-DC CONVERTER DESIGN

Switched power converter circuits have an inherent voltage ripple at their output, on top of which are superimposed unpredictable large voltage droops caused by switching activity of dynamic load elements, which are usually largest at the beginning of every clock cycle [7]. Because digital circuits must function correctly at the minimum possible voltage, there is often significant clock period margin added to allow for this supply noise, substantially reducing system energy efficiency.

Adaptive clocking has recently been proposed to cope with both static and dynamic variations by scaling performance with supply [6]. In this work, we introduce an aggressive form of adaptive clocking that tracks voltage ripple at the converter’s output (Fig. 1), allowing greater converter efficiency and improving energy efficiency of the entire system. Unlike earlier work [6], our adaptive clock is dynamically tracking changes in the supply within each clock cycle, and not with one clock cycle of latency.

A. Loss Optimization in Conventional DC-DC converter

Our design is built around a reconfigurable SC DC-DC converter using MOS capacitors in a 28 nm FDSOI technology.
[8], [9], and it has three different configurations: 2-1 and 3-2 topologies operating off a 1 V input and a 2-1 topology operating off a 1.8 V input. In order to elucidate the key loss mechanisms, we begin by examining the operation of 2:1 step-down reconfigurable converter shown in Figure 2. The specific details of the switched capacitor circuit design are provided in subsection II-C. For the 2:1 conversion, the switch S3 is always off. The converter operates in two non-overlapping phases φ1 and φ2. The equivalent waveforms on the capacitor and at the output are shown in the same figure.

In a fully-integrated switched-capacitor DC-DC converter multiple switching phases are used to reduce the output ripple [5], [14]. We are referring to this type of converter as the conventional interleaved or just conventional converter.

Optimizing the converter requires selecting the capacitor size C_{fly}, the switch size W_{sw}, and the switching frequency f_{sw}. The capacitor size is usually fixed by the chosen power density. Power density represents the ratio between the converter output power and its area and is a useful metric for calculating converter area overhead for a given processor power. The two remaining design parameters are obtained through the optimization of four major loss components [5]:

- intrinsic switched-capacitor loss $P_{C_{fly}}$, proportional to f_{sw}^{-1} and independent of the switch size W_{sw}
- bottom-plate P_{bottom} proportional to f_{sw} and independent of the switch size W_{sw}
- switching loss P_{switch}, proportional to f_{sw}, W_{sw}
- conduction loss P_{cond}, independent of f_{sw} and proportional to W_{sw}^{-1}

To optimize f_{sw} and W_{sw}, the sum of loss terms that are directly or inversely proportional to f_{sw} and W_{sw} is minimized.

B. Loss Optimization in Rippled DC-DC Converter

The switched-capacitor loss is a consequence of charging and discharging the flying capacitor and is manifested in the ripple at the output. The performance of traditional circuits is typically set by the minimum voltage V_{min} of the supply rail. Any voltage above that will result in power loss since this additional power does not contribute to the increase in performance. By eliminating the switched-capacitor loss, the converter can operate at the minimum switching frequency necessary to guarantee a maximum allowable ripple at the output (which is typically set by transistor reliability concerns) since the remaining loss terms are either directly proportional or independent of f_{sw}. This results in a much higher converter efficiency.

TABLE I

<table>
<thead>
<tr>
<th>Approach</th>
<th>P_{out}</th>
<th>P_{fly}</th>
<th>P_{cond}</th>
<th>P_{gate}</th>
<th>P_{bott}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>80%</td>
<td>8%</td>
<td>5%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Proposed</td>
<td>95%</td>
<td>≈0%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>

To illustrate the idea, the breakdown of power losses when the SC converter is optimized for maximum efficiency is presented in Table I for a conventional interleaved converter and the proposed approach. Both converters are assumed to have the same power density of 0.4 W/mm² (i.e. same flying capacitor area and the same load power) and we use 16 interleaved switching phases for the conventional converter. Loss components, inversely proportional to f_{sw}, dominate in interleaved converters. Once the ripple constraint is relaxed, f_{sw} can be scaled down in the proposed approach, resulting in substantially smaller bottom-plate and switching losses. Furthermore, smaller switching losses allow for the switches to be larger resulting also in smaller conduction loss and overall efficiency above 90%.

C. DC-DC Circuit Design

In order to achieve reconfigurability, we embed two identical sub-converter unit cells into one as in [5]. Two sets of switches are used for better energy efficiency: one set for the configurations operating off a 1 V (set 1) and the other set for the configuration operating off a 1.8 V (set 2). More detailed DC-DC converter circuit diagram is given in Fig. 3.

The switches employed for each of the configuration are given in Table II. Instead of single transistors, pass gates are used for some of the switches (B1, D1, F1 and H1) to decrease their ON resistance when the output voltage is low (i.e. configuration 3). All three configurations are achieved by switching the converter in two clock phases as explained in II-A. To illustrate operation of a representative SC converter, detailed simulation waveforms for all configurations are presented in Fig. 4. The waveforms were generated by choosing 0.36 mm² as available area for the flying capacitor and microprocessor power consumption of 150 mW at 1 V. For these settings, we found that the ripple size varies from 100 mV for the configuration 3 (bottom waveform) to 300 mV for the configuration 1 (top waveform), while the switching frequency varies from 10 MHz for configuration 3 to 100 MHz for configuration 1. Small droop in voltage observed in configuration 3 is due to
to calculate efficiencies to within a few percent compared to measured efficiencies [5]. The rippled approach has three loss terms instead of four. The efficiencies are modeled as a function of the reference voltage, V_{ref} (marked in Fig. 1), for a particular load I_{load}:

$$\eta = f(V_{ref}, I_{load})$$

We also model the output waveform of the converter for a given configuration and V_{ref} to match the transistor-level schematic simulation. Equivalent RC circuits for converter switching phases are modeled with differential equations.

2) CPU Energy and Frequency Model: We use a vector processor core based on a RISC-V ISA [10] implemented in a 28nm FDSOI technology. Using Synopsys PrimeTime (PT), we obtain power and timing reports for the core (see Fig. 6). We model the CPU frequency and CPU dynamic and leakage energies per cycle as a function of supply voltage V_{DD} [0.4 V, 1.3 V], body-bias voltage V_{BB} [0 V, 1.5 V], and temperature T [-40° C, 125° C] by fitting PT results into a set of analytical equations. Frequency is modeled as:

$$f_{cpu} = k_f \frac{V_{DD} - V_{th}}{V_{DD}} + k_{Tc}(V_{DD}, V_{th})(1 + k_{Tf} T)$$

where k_f is a proportionality constant and α is the velocity saturation term that models short channel effects. Coefficients k_{Tf} and k_{Tc} are introduced to model the frequency’s dependence on temperature. For a fixed temperature, this frequency model follows the well-known alpha power law. Drain current I_d has a positive temperature coefficient for near-threshold operation and a negative temperature coefficient for strong saturation [11]. PT simulations confirmed that the CPU performance follows the same temperature behavior.

Dynamic switching energy is given by:

$$E_{dyn} = C_{sw} V_{DD}^\beta (1 + k_{bb} V_{BB})(1 + k_{Tdyn} T)$$

where C_{sw} is the total effective switched capacitance and β is a constant close to 2, but is left as a fitting knob in the equation to achieve better fitting results. Additionally, two more constants, k_{bb} and k_{Tdyn}, are introduced to model how back-bias and temperature influence the dynamic energy.

Leakage power is modeled as:

$$P_{leak} = I_0 V_{DD} T^\gamma \exp \left(-\frac{V_{th}(V_{DD}, V_{BB}, T)}{n V_{therm} \ln 10} \right)$$
where \(V_{therm} \) is the thermal voltage, \(n \) is the subthreshold swing coefficient, and \(I_0 \) is a constant. We introduce the power supply and temperature dependence through factors \(V_{DD} \) and \(T^\gamma \). While \(\gamma \) usually has a value of 2 [15], we found better fitting results for this technology can be obtained by setting it to 1.8. Leakage energy per cycle is obtained as \(P_{\text{leak}}/f_{cpu} \).

3) Adaptive Clock Model: As Fig. 1 shows, the clock period changes dynamically with the rippling supply voltage. A tunable replica circuit models the critical path of the processor to produce the dynamic CPU frequency given by (2), similar to [6]. To obtain an accurate estimate of the per-cycle energy, we model this adaptive clock on cycle-by-cycle basis.

We start with the output voltage waveform \(V_{DD}(t) \), by simulating the operation of DC-DC converter as described in Section III-1. The load for the converter is obtained by using the processor model at \(V_{BB} = 0 \) and 25°C as described in Section III-2. Detailed steps for obtaining the voltage waveform are given in III-4. At a time \(t_i \), the CPU clock period, \(T_{cpu}(t_i) \), is calculated from the reciprocal of (2) evaluated at \(V_{DD}(t_i) \). Then, the next CPU clock period should be evaluated at a time \(t_{i+1} = t_i + T_{cpu}(t_i) \). To account for a CPU frequency change with the supply voltage, we split the clock period into 100 time steps and calculate the incremental delay at each step following the same methodology. Averaging the incremental delays gives the total CPU clock period.

4) Per-Core DVFS Model: Given a target speed for the processor core, the complete model calculates the energy per cycle for a system that contains one processor core, the reconfigurable DC-DC converter, and the adaptive clock generator. The energy-delay (ED) curves for the proposed approach are presented in Fig. 7. The temperature is set to the room temperature of 25°C, which corresponds to the temperature value that was used for DC-DC converter model characterization. Each point on the ED curve for a particular configuration is obtained as follows:

A) First, we model the CPU as a voltage-controlled current source at the output of the converter. The current dependence on voltage is calculated using (2,3,4):

\[
I_{\text{load}} = \frac{(E_{\text{dyn}}f_{cpu} + P_{\text{leak}})}{V_{DD}}
\]

(5)

B) Then a reference voltage value is chosen. This sets the ripple size and the switching frequency of the converter for a given load. Approximate voltage waveforms are computed based on the chosen converter configuration, \(V_{ref} \), and \(I_{load} \) as described in Section III-1.

C) The adaptive clock model is applied, and by knowing the voltage waveform, the processor’s core energy is computed in each varying clock cycle. The results are averaged over time to obtain the energy per cycle and average clock period.

D) We divide the core energy per cycle by the converter efficiency for that particular setting, and obtain the energy per cycle of the entire system. This allows us to model many different real-world scenarios and analyze the behavior of the proposed system in a short time.

IV. OPTIMIZED DVFS SCHEME

Due to the nonlinearity of processor energy and frequency, there is a small energy overhead when the processor is supplied by a variable voltage compared to the processor supplied by a flat voltage for the same target performance. Still, this penalty is ripple size dependent and is negligible for the converter’s most efficient operating point.

This loss can be ascribed by a simple model. We assume that the CPU frequency is linearly dependent on the supply voltage and that the energy is dominated by the dynamic energy (i.e. it follows \(CV^2 \) law). We also assume a constant current load. With these assumptions, the interleaved approach has the same performance as the proposed approach if its output voltage is \(V_{avg} = \frac{1}{2}(V_{max} + V_{ref}) \) (see Fig. 1). The energy of the interleaved approach is then

\[
E_{\text{interleaved}} = CV_{avg}^2,
\]

while the energy of the rippled approach is

\[
E_{\text{rippled}} = \frac{1}{V_{max}-V_{ref}} \frac{V_{max}^2}{2} CV^2 dV.
\]

Simplifying the previous equation gives an energy difference of

\[
\Delta E = E_{\text{rippled}} - E_{\text{interleaved}} = \frac{1}{12} C (V_{max} - V_{ref})^2
\]

which is only around one percent of the interleaved energy, assuming for example a 300 mV ripple for \(V_{avg} = 0.9 \) (configuration 1).

A. Energy optimization algorithm: \(V_{DD} \) hopping

System software schedules tasks onto the cores and applies two different constraints to each of the DVFS blocks: the total clock cycles required to execute the task, \(N \), and the desired run time for the task execution, \(T_d \).

Minimum system energy is usually found by using the optimal DC-DC configuration that still meets the target frequency (e.g. the curve for configuration 3 for a 6 ns delay constraint in Fig. 7). However, a more energy-optimized execution is possible by hopping between two different configurations.

Assume \(N_1 \) clock cycles are spent in the first and \(N_2 \) cycles in the second configuration. Many different average CPU delays, \(t_i(i = 1, 2) \) are achieved by sweeping \(V_{ref} \) for each of the configurations. The following must be true:

\[
a) N_1 + N_2 = N; \quad b) N_1 \cdot t_1 + N_2 \cdot t_2 = T_d
\]

(6)

The total system energy is:

\[
E = N_1 \cdot E_1(t_1) + N_2 \cdot E_2(t_2)
\]

(7)

To find the minimum energy, the derivatives of (7) with respect to \(N_1 \) and \(N_2 \) are set equal to zero resulting in:

\[
\frac{dE_1}{dt_1} = \frac{dE_2}{dt_2} = \frac{E_1(t_1) - E_2(t_2)}{t_1 - t_2}
\]

(8)
The first equality forces the same slope for the tangents at \(t_1 \) and \(t_2 \), while the second one positions them on the same line. Thus, minimum energy is achieved if the system is hopping between two states of two different configurations that lie on the common tangent of both E-D curves (see Fig. 7). This narrows down the design-space exploration, since there are only two \(V_{\text{ref}} \) values in each configuration that need to be considered (one for each tangent toward adjacent configurations).

Similarly, it can be proved that the energy for hopping between three or more configurations is larger than the two-state hopping energy and should not be considered. Hopping between states incurs an energy loss during the actual state transition, but it is negligible with a large total time \(T_d \). We found that the highest energy difference occurs when switching from configuration 3 to configuration 1 and is equal to the energy spent by the processor in 8 cycles. Since we assume that the applications running on cores contain millions of cycles, this energy overhead is not significant.

B. Combined use of hopping and body-biasing

The optimal point for a given workload can be reached by properly tuning all variables that are available to a designer. State-of-the-art FDSOI technology enables a much wider body-bias range and better leakage-performance trade-offs compared to bulk CMOS because of the buried oxide that isolates the channel from the back side of the transistor [9] and a body factor of around 80 mV/V. In this work, body bias is considered together with \(V_{DD} \) hopping to perform a sensitivity analysis ([12], [13]) to reach the minimum energy point. Our modeling framework is able to calculate hopping ratios and body-bias values for any given temperature and any performance demand in order to reach the minimum energy point. An example of an ED curve for different configurations and different \(V_{BB} \)s is given in Fig. 8. The light shaded region indicates a target performance range where hopping should be applied, while the dark shaded region is where changing the body bias will give a more optimized design. As expected, body bias has greater influence in lower DC-DC states where a small energy loss can be traded for a huge speed improvement.

V. RESULTS

First we evaluate the accuracy of the proposed DC-DC converter and then we evaluate the models proposed in Section III and calculate the energy savings of the proposed DVFS technique by using the modeling framework.

A. DC-DC converter evaluation

The efficiency was analytically computed for two converter types: one with 16 interleaved phases and the proposed converter with a rippling output.

The efficiency versus power density is presented in Fig. 9. The curve for the rippled approach has a more moderate slope, resulting in a better efficiency - power density tradeoff. By paying a small penalty in efficiency, e.g. 5%, the power density of the rippled approach can be increased by a factor of two (i.e. the area of the rippled converter is half the area of the interleaved converter). Thus, the proposed converter is a better solution, particularly for manycore processors where the area overhead of the per-core DC-DC converter is an important constraint.

B. DVFS evaluation

1) **Model evaluation:** Relative fitting errors for CPU frequency, CPU dynamic energy per cycle and CPU leakage power at -40°C and 125°C are presented in Fig. 10, in the first, second and third column, respectively. Dynamic energy and frequency models are highly accurate with most of the relative errors below 10%. Although relative errors for leakage power go slightly above 30% for some points at -40°C, their impact on the total energy is very small, since leakage energy accounts for less than 5% of the total CPU energy at -40°C.

2) **ED comparison:** For this set of experiments, we chose two different power densities for the converter optimization: 0.4 W/mm², the point where the efficiency vs. power density curve in Fig. 9 saturates, resulting in a very high efficiency for the DC-DC converter; and 4 W/mm² where the area of the converter becomes a small overhead compared to the area of the processor. For each power density, we plot the energy-delay curves for both the interleaved and the proposed approach for all three DC-DC configurations by using the modeling framework presented in Section III.

Energy-delay curves for the 0.4 W/mm² optimization point are presented in Fig 11. The area overhead for this point is...
around 25%. We assume V_{BB} equal to 0 V and 25°C temperature. The dashed and dash-dot curve represent the minimum energy curves that are achieved through V_{DD} hopping for the rippled and interleaved approach, respectively.

The energy savings of the proposed approach for the lower configurations (i.e. 2 and 3) vary between 5% and 25% when compared to the DVFS scheme based on the interleaved approach. Due to the larger ripple size in configuration 1, the nonlinear effects described in Section IV-A are responsible for up to 8% worse energy efficiency of the rippled approach in this case. However, this can be mitigated by using linear regulators at the input of the rippled converter that will cause the energy-delay curves for the proposed approach to shift towards lower energy and higher delay values (i.e. they will shift down and to the right in the figure). Consequently, more moderate slope on the V_{DD} hopping curve will create a smaller difference in the energy of both approaches.

Figure 12 shows energy-delay curves for the 10 times greater power density optimization point. The area overhead of the DC-DC converter is reduced to 2.5% by paying a 6% penalty in efficiency decrease for the proposed converter, as opposed to 12% for the interleaved converter. The energy savings of the proposed approach are between 0.1% and 12% when compared to the interleaved approach over a whole range of performance constraints. At high power densities, the switching frequency of the converter increases as well. However, the increase is less for the rippled approach than for the interleaved approach verifying the analysis from Section II (e.g. 30% difference for high target speed as shown in Fig. 12). Additionally, high switching frequencies are easier to achieve for the rippled converter, since the voltage regulation scheme can be much simpler when there is no need for the reduction of the voltage ripple at the output of the converter. This makes the proposed approach extremely suitable for the fine-grained DVFS schemes.

VI. CONCLUSION

We have presented a novel fine-grained DVFS technique with integrated switched-capacitor converters for manycore processors. The extra power due to charging and discharging the flying capacitors is turned into additional performance, allowing extreme optimization of the SC converters that results in efficiencies over 90% for a wide range of conversion ratios. Overall system energy minima are obtained through a combined technique of body-bias voltage tuning and DC-DC state hopping, resulting in energy savings between 5% and 25% over a wide range of possible performance constraints. The approach is fully compatible with CMOS processes and can have the area overhead as low as 2.5%, which makes it suitable for practical use in manycore systems.

ACKNOWLEDGMENT

This research was funded by DARPA Award Number HR0011-12-2-0016 and Intel ARO. The authors acknowledge the support from a Marie Curie International Outgoing Fellowship within the FP7 Programme and also the contributions of the students, faculty and sponsors of the Berkeley Wireless Research Center.

REFERENCES

Ruzica Jevtić (IEEE Member) received the B.S. degree in Electrical Engineering from the University of Belgrade, Serbia in 2004 and Ph.D degree in Electrical Engineering with European PhD mention from the Technical University of Madrid, Spain, in 2009. Her PhD work was oriented towards CAD tools for high-level modeling, power estimation, measurements and architecture design for high-speed computational systems in FPGAs. From 2011 to 2013, she worked as a postdoctoral researcher at the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley on energy efficient microprocessor design. She is currently working as a researcher at the Technical University of Madrid. She is a recipient of FP7 Marie Curie International Outgoing Fellowship.

Hanh Phuc Le (IEEE Member) received the B.S. in Electrical Engineering from Hanoi University of Technology, Vietnam, in 2003, M.S. from KAIST, Korea, in 2006, and PhD Degrees from UC Berkeley, California, in 2013. He co-founded Lion Semiconductor Inc where he is currently the CTO. He has working experiences with V.A.ST in Vietnam, KEC, LG and JDA Tech. in Korea, Sun MicroSystems, Intel and Rambus. He is interested in Circuit Designs for Power Electronics and Telecommunications, focusing on SMPS, fully integrated conversions for high-performance digital ICs, control methodology and mix-signal integrated circuits.

Milovan Blagojević received the B.Sc. and M.Sc. degrees in Electrical Engineering from School of Electrical Engineering at University of Belgrade, Serbia, in September 2010 and January 2012, respectively. In 2010 he interned in HW/SW Co-Design group at Institute for Informatics, Erlangen, Germany and in 2011 at Intel Belgrade, in image processing team under ultra mobility group (UMG). His work involved research and development of HDR algorithm implemented on a specific VLIW processor. In May 2012 he enrolled in a CIFRE PhD program that is realized in cooperation among three institutions: Berkeley Wireless Research Center, ST Microelectronics in Crolles, France, and Institute ISEP in Paris. He is currently working on Energy-Performance Optimization in modern digital systems, with emphasis on advantages of new UTBB FDSOI technology.

Stevo Bailey received his B.S. degrees in Engineering Science and Physics from The University of Virginia in 2012. During his undergraduate studies he interned at Jefferson Labs through the Virginia Microelectronics Consortium and Old Dominion University. He also researched fault-tolerant, reconfigurable adders designs for future nanoelectronic systems. In 2012 he joined the Berkeley Wireless Research Center. He is currently pursuing a Ph.D. at the University of California at Berkeley. His research interests include robust and power-efficient processor and ASIC design. He is currently exploring soft-error resilient logic design techniques and researching automation of these techniques.

Krste Asanović (S90-M98-SM12-F14) received the B.A. degree in Electrical and Information sciences from Cambridge University, Cambridge, U.K., in 1987, and the Ph.D. degree in Computer Science from the University of California, Berkeley, in 1998. He was an Assistant and Associate Professor of electrical engineering and computer science at the Massachusetts Institute of Technology, Cambridge, from 1998 to 2007. He is currently a Professor in the Electrical Engineering and Computer Sciences Department at the University of California at Berkeley. He is an ACM Distinguished Scientist and an IEEE Fellow. His research interests include computer architecture, VLSI design, and parallel programming and run-time systems.

Elad Alon received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Stanford University in 2001, 2002, and 2006, respectively. In Jan. 2007, he joined the University of California at Berkeley, where he is now an Associate Professor of Electrical Engineering and Computer Sciences as well as a co-director of the Berkeley Wireless Research Center (BWRC). He has held consulting or visiting positions at Wilocity, Cadence, Xilinx, Oracle, Intel, AMD, Rambus, Hewlett Packard, and IBM Research, where he worked on digital, analog, and mixed-signal integrated circuits for computing, test and measurement, and high-speed communications.

Dr. Alon received the IBM Faculty Award in 2008, the 2009 Hellman Family Fund Award as well as the 2010 UC Berkeley Electrical Engineering Outstanding Teaching Award, and has co-authored papers that received the 2010 ISSCC Jack Raper Award for Outstanding Technology Directions Paper, the 2011 Symposium on VLSI Circuits Best Student Paper Award, and the 2012 Custom Integrated Circuits Conference Best Student Paper Award. His research focuses on energy-efficient integrated systems, including the circuit, device, communications, and optimization techniques used to design them.

Borivoje Nikolić (S93-M99-SM05) received the Dipl.Ing. and M.Sc. degrees in electrical engineering from the University of Belgrade, Serbia, in 1992 and 1994, respectively, and the Ph.D. degree from the University of California at Davis in 1999. In 1999, he joined the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, where he is now a Professor. His research activities include digital, analog and RF integrated circuit design and VLSI implementation of communications and signal processing algorithms. He is co-author of the book Digital Integrated Circuits: A Design Perspective, 2nd ed, Prentice-Hall, 2003. Dr. Nikolić received the NSF CAREER award in 2003, College of Engineering Best Doctoral Dissertation Prize and Anil K. Jain Prize for the Best Doctoral Dissertation in Electrical and Computer Engineering at University of California at Davis in 1999, as well as the City of Belgrade Award for the Best Diploma Thesis in 1992. For work with his students and colleagues he has received the best paper awards at the IEEE International Solid-State Circuits Conference, Symposium on VLSI Circuits, IEEE International SOI Conference, European Solid-State Device Research Conference, and the ACM/IEEE International Symposium of Low-Power Electronics.